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Summary

This paper presents a navigation method in outdoor environments when trees are
present in the workspace, in order to detect the obstacles, a laser scanning sensor is
used. When an obstacle is sensed, the path planning task for avoiding collisions is
carried out with a geometrical approach. The trajectory tracking of the path found is
performed with a suboptimal nonlinear control of finite horizon in discrete domain;
as it was demonstrated in previous results, the sub-optimal nonlinear sequence allows
to optimize energy. Satisfactory experimental results are obtained in outdoors using
a four-rotor vehicle with a GPS sensor.
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1 INTRODUCTION

The problem of autonomous navigation using an aerial vehicle is a complex task because it involves many challenges: environ-
mental recognition, obstacles detection, collision avoidance, decision making, path planning and updating, and also the aircraft
control strategy to be applied. There are many works that address the navigation problem for aerial vehicles in the presence of
obstacles, the differences between them mainly lie in the type of sensor used to identify the obstacles. For example, Ait-Jellal et
al.1 implemented a hybrid algorithm combining SLAM and stereo vision. The union of these algorithms allowed them to obtain
a 3D map. Finally, for the planning of safe trajectories, the rapidly exploring random tree algorithm (RRT) was used in a three-
dimensional space. The algorithm was implemented in a quadcopter, data was collected in outdoors and finally these data were
analyzed in the Kitti odometry benchmark. Another similar work, where stereoscopic vision was also used, was developed by
Barry et al.2, where Open CV tools were used for the disparity analysis between characteristic points. This analysis was done
only for a depth which allowed them to analyze images at high frame rate, this algorithm was implemented in a small Unmanned
Aerial Vehicle (UAV) which was able to detect obstacles flying at a speed of 20𝑚∕𝑠. Other works include optimization meth-
ods to find an obstacle-free path, as it was proposed by Campos-Macías et al.3, in that work, a method for planning trajectories
in known environments was presented, the proposed algorithm was a fusion of sampling-based techniques and model-based
optimization via quadratic programming; experimental results were obtained by using the Optitrack motion capture system in
order to sense the positioning, while the control algorithm was computed in a ground station. There are also works that use a
combination of one or more sensors to detect obstacles, as the results presented by Anis et. al4, where an image sensor was
used to recognize the objects position and an ultrasonic sensor was used to detect the distance to the obstacles. All the scheme
was also implemented in a Quadcopter using a PID control. Bugayong et al.5 also applied stereoscopic vision: this algorithm
provides a disparity map which was used to obtain the actual depth measurements of the obstacles, the proposed algorithm was
executed in a Raspberry Pi embedded computer and implemented on a quadcopter, experimental results were obtained in an
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indoor environment where a PID control was used to drive the trajectory tracking task, however this task was only executed in
the rotational dynamics of the vehicle. Rahman et al.6 reported the use of rotating ultrasonic sensor to detect obstacles, in order
to characterize the behavior of the vehicle depending on the distance to obstacle, several flight states or modes were introduced.
Experimental tests were conducted using a four-rotor vehicle. Mohanta et. al7 have used an ultrasonic sensor for the detection
of obstacles. These measurements were combined with data from an infrared sensor having a detection range of 1 meter. Sev-
eral flight scenarios were proposed in order to track trajectories, the algorithm was tested in a four-rotor vehicle, which was
controlled by a PID controller. Simulation and experimental results were carried out. Thanh et. al8 synthesized a robust nonlin-
ear control to avoid collisions on the aircraft, with a geometric approach, the obstacles were represented as a circumference to
facilitate the algorithm calculations, the evasion process was carried out by changing the direction of the aircraft, the algorithm
was implemented in a quadcopter vehicle to avoid one or multiple obstacles, numerical simulation results were obtained. Yang
et. al9 proposed a reactive obstacle avoidance system with a monocular camera, which used Convolutional Neural Networks to
progressively estimate the depth of the obstacles. Simulation and experimental results were obtained, using a Quadcopter Parrot.
This prototype sends the images to a server, where the analysis of obstacle avoidance action and control signals were computed.
Other works are focused on the control synthesis based on optimization to track trajectories and obstacle avoidance problem. In
fact, based on prior knowledge of the obstacles position, Mendoza-Soto et al.10 reported an evasion collision of the considered
aerial vehicle. However, the experiments were made in a controlled environment, the control strategy used was a constrained
generalized predictive control which was implemented in a quadcopter. Experimental results were obtained using an artificial
vision system to estimate the position of vehicle. A similar method for the detection and obstacle avoidance for multiple robots
in unknown environments was presented by Yu et. al11, a laser scanning sensor was used, and an optimization procedure was
performed in order to choose the best obstacle-free path. Only simulation results of the proposed algorithm were presented.

According to the results exposed above, most of the algorithms for the obstacles avoidance problem are based on the artificial
vision, and they could be affected by the illumination levels in outdoor environments. This is a common problem in most
navigation systems based on computer vision, see Máthé12. Additionally, the computational cost could be relatively high if one
aims to implement the algorithm in a low cost autopilot. The other option is the use of the laser scanning sensor. However, in
the best knowledge of the authors only simulation results are presented or experimental results under controlled environments,
and not in outdoor environments. Additionally, the optimized nonlinear control used here, are not tested yet for detecting
and obstacle avoidance tasks. So, the main contributions of this paper could be summarized as follows:

• Implementation of a real time algorithm for obstacle detection and avoidance, on an aerial vehicle.
• Real-time planning and updating of the UAV trajectory, based on the analysis of the navigation environment, based on a

laser scanning sensor.
• The real time implementation on the autopilot of a non-linear control algorithm based on energy optimization for trajectory

tracking task.
This paper is organized as follows: In section 1, a brief introduction of the navigation process using an autonomous aerial

vehicle is presented. Section 2 describes the mathematical model of the used platform. The applied control technique to track
the trajectories is shown in section 3. Section 4 presents the navigation process which involves the process of data acquisition
and processing, the process of detection and collision avoidance, and the trajectory planning and updating. Section 5 shows
the description of the experimental platform used for the experimental tests. Section 6 presents the experimental results of the
navigation process. In Section 7 the conclusions of the work are discussed. Finally the acknowledgments are given in Section 8.

2 QUADCOPTER MODEL

The Quadcopter is a vehicle with four rotors, whose mathematical model is already well studied, for example see Lozano13,
Castillo14 and Das15. In this paper we use the model proposed by Lozano13, which is obtained from the Euler-Lagrange
formalism and considering the following assumptions:

• The aircraft has a rigid and a symmetrical structure.
• The center of gravity of the vehicle coincides with the origin in the body frame.
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• The propellers are rigid with a fixed pitch.
• At low velocities, aerodynamic effects can be neglected.
• The rotor dynamics is approximately equal to 1
• The angles are restricted: −𝜋∕4 < 𝜙, 𝜃 < 𝜋∕4 and −𝜋 < 𝜓 < 𝜋.

.
So, the movement equations for the aerial vehicle are given in the following way:

𝑚𝑥̈ = −𝑢 sin 𝜃 (1)
𝑚𝑦̈ = sin𝜙 cos 𝜃
𝑚𝑧̈ = cos𝜙 cos 𝜃 − 𝑚𝑔

𝜙̈ =𝜏𝜙 (2)
𝜃̈ =𝜏𝜃
𝜓̈ =𝜏𝜓

where 𝑚 = 1.4 𝑘𝑔 is the mass of the vehicle, (𝜙, 𝜃, 𝜓) are the angles 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ and 𝑦𝑎𝑤 which represent the attitude of the
aircraft. The variables (𝑥, 𝑦, 𝑧) are the Cartesian coordinates and they represent the relative position of the center of mass with
respect to an inertial frame, 𝑔 = 9.81𝑚

𝑠2
is the gravitational acceleration. The variables 𝑢, 𝜏𝜙, 𝜏𝜃 and 𝜏𝜓 represent the control

inputs. For the control synthesis of the vehicle, the mathematical model is divided into four subsystems which will be given in
next section. The control strategy used was proposed originally by Santos16, without obstacles detection, collision avoidance
and path planning.

3 CONTROL STRATEGY

In this section the control technique used to do the navigation task is presented. It is a sub-optimal discrete nonlinear sequence
control of finite horizon, the continuous mathematical model is discretized by using the Euler’s approximation. The synthesis of
this control, originally presented by Santos16, is used here to perform the trajectory tracking task. The main motivation to use
a sub-optimal discrete nonlinear control (SDNLC) is to penalize the energy consumption, and at the same time the state has to
track the reference with the fastest possible convergence rate. In fact, the optimal control could be a good option to optimize
energy and to penalize the convergence of the closed loop response of the plant. However, notice that the optimal control
problem for nonlinear discrete and continuous systems is an open problem on the Dynamic Programming Approach,
due to the difficulty to solve the Hamilton Jacobi Bellman equation for the general case, see for example Komaee17 and
Santos16. So numerical approximations (sub-optimal control) could be proposed, see Wang18. Nevertheless, as Komaee17

states, an acceptable approximation that meets all the control requirements can be still difficult to obtain. In fact, for
UAV’s, if a nonlinear mathematical model is considered, a SDNLC could be used to satisfy the requirement of the energy
saving. It will increase the flight time of the UAV, due to the battery usage optimization of the vehicle, but at the same
time, the structure of the chosen SDNLC and its tuning, have to be reasonably simple to implement them on the UAV
autopilot. The SDNLC is summarized briefly in the next section.

3.1 Suboptimal discrete nonlinear control for affine systems
Consider the nonlinear discrete affine system as follows

𝑥̄(𝑘 + 1) = 𝑓0(𝑥̄ (𝑘)) + 𝑓1 (𝑥̄ (𝑘)) 𝑢 (𝑘) , (3)
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where 𝑘 = 0, 1, .., 𝑁, 𝑥̄ (𝑘) , 𝑓0(𝑥̄ (𝑘)) ∈ 𝑅𝑛, 𝑓1 (𝑥̄ (𝑘)) ∈ 𝑅𝑛×𝑚 and 𝑢(𝑘) ∈ 𝑅𝑚, with sampling time 𝑇 . Define the following
performance index

𝐽 = 1
2
𝑥̄𝑇 (𝑁)𝐻𝑥̄(𝑁) + 1

2

𝑁−1
∑

𝑘=0

{

𝑥̄𝑇 (𝑘)𝑄𝑥̄(𝑘) + 𝑢𝑇 (𝑘)𝑅𝑢(𝑘)
}

, (4)
where the horizon is 𝑡𝑓 = 𝑇𝑁 and 𝐻,𝑄 ≥ 0 and 𝑅 > 0 are matrices of appropriate dimensions. We want to find a
suboptimal control sequence which minimizes the performance index (4) subject to the system given by (3). The essence of
the following dynamic programming approach in discrete time was proposed originally by Bellman19,20,16. First, define
the next notation:

𝐽 ∗
𝑁,𝑁 = 1

2
𝑥̄𝑇 (𝑁)𝐻𝑥̄(𝑁).

Notice that this term does not depend of the control law 𝑢(𝑁), and it could be called the optimal value of 𝐽 in the discrete
time 𝑁 . Then, the next step is defined as follows

𝐽 ∗
𝑁−1,𝑁 = min

𝑢(𝑁−1)

{1
2
𝑥̄𝑇 (𝑁)𝐻𝑥̄(𝑁) + 1

2
𝑥̄𝑇 (𝑁 − 1)𝑄𝑥̄(𝑁 − 1) + 1

2
𝑢𝑇 (𝑁 − 1)𝑅𝑢(𝑁 − 1)

}

= min
𝑢(𝑁−1)

{

𝐽 ∗
𝑁,𝑁 + 1

2
𝑥̄𝑇 (𝑁 − 1)𝑄𝑥̄(𝑁 − 1) + 1

2
𝑢𝑇 (𝑁 − 1)𝑅𝑢(𝑁 − 1)

}

.

The value of the state 𝑥̄(𝑁) could be calculated using the state space equation given by (3), then:

𝐽 ∗
𝑁−1,𝑁 (𝑥̄ (𝑁 − 1) , 𝑢 (𝑁 − 1)) = min

𝑢(𝑁−1)

{1
2
[

𝑓0(𝑥̄ (𝑁 − 1)) + 𝑓1 (𝑥̄ (𝑁 − 1)) 𝑢 (𝑁 − 1)
]𝑇 𝐻×

[

𝑓0(𝑥̄ (𝑁 − 1)) + 𝑓1 (𝑥̄ (𝑁 − 1)) 𝑢 (𝑁 − 1)
]

+ 1
2
𝑥̄𝑇 (𝑁 − 1)𝑄𝑥̄(𝑁 − 1) + 1

2
𝑢𝑇 (𝑁 − 1)𝑅𝑢(𝑁 − 1)

}

, (5)
in this step, necessary conditions for the optimality of the variational calculus are used to find the minimum of 𝐽𝑁−1,𝑁 .
It follows that

𝑢∗ (𝑁 − 1) = −
[

𝑓 𝑇1 (𝑥̄ (𝑁 − 1))𝐻𝑓1 (𝑥̄ (𝑁 − 1)) + 𝑅
]−1 𝑓 𝑇1 (𝑥̄ (𝑁 − 1))𝐻𝑓0 (𝑥̄ (𝑁 − 1)) , (6)

the positive definiteness of the matrix 𝑅 guarantees that
[

𝑓 𝑇1 (𝑥̄ (𝑁 − 1))𝐻𝑓1 (𝑥̄ (𝑁 − 1)) + 𝑅
]−1 exists. Observe that the

control given by (6) is the local optimal control, because
𝜕2𝐽𝑁−1,𝑁 (𝑥̄ (𝑁 − 1) , 𝑢 (𝑁 − 1))

𝜕2𝑢 (𝑁 − 1)
= 𝑅 > 0. (7)

The existence of a local minimum is guaranteed, because right side in the equation (5) is strongly convex with respect
to 𝑢 (𝑁 − 1). For the following step 𝑁 − 2, note that the value of 𝑢∗ (𝑁 − 1) is the optimal value in the step 𝑁 − 1, and
according with the Bellman optimality principle, this control generates the optimal value for 𝑥̄ (𝑁 − 1). Then for this
step we have that:

𝐽𝑁−2,𝑁 (𝑥̄ (𝑁 − 2) , 𝑢 (𝑁 − 1) , 𝑢 (𝑁 − 2)) = min
𝑢(𝑁−1),𝑢(𝑁−2)

{1
2
𝑥̄ (𝑁)𝑇 𝐻𝑥̄ (𝑁) + 1

2
𝑥̄𝑇 (𝑁 − 1)𝑄𝑥̄(𝑁 − 1)

+ 1
2
𝑥̄𝑇 (𝑁 − 2)𝑄𝑥̄(𝑁 − 2) + 1

2
𝑢𝑇 (𝑁 − 1)𝑅𝑢(𝑁 − 1)

+ 1
2
𝑢𝑇 (𝑁 − 2)𝑅𝑢(𝑁 − 2)

}

, (8)
Notice that, the term which involves 𝑥̄ (𝑁), depends of the control 𝑢 (𝑁 − 1) and the term with 𝑥̄(𝑁 − 2) depends of the
control 𝑢 (𝑁 − 3), only the term with 𝑥̄ (𝑁 − 1) depends of the control 𝑢 (𝑁 − 2). But, the control 𝑢 (𝑁 − 1) founded in
previous step is optimal and 𝑥̄ (𝑁 − 1) is given by the state equation (3), it follows that

𝐽𝑁−2,𝑁 (𝑥̄ (𝑁 − 2) , 𝑢 (𝑁 − 2)) = min
𝑢(𝑁−2)

{1
2
𝑥̄ (𝑁)𝑇 𝐻𝑥̄ (𝑁) + 1

2
[

𝑓0(𝑥̄ (𝑁 − 2)) + 𝑓1 (𝑥̄ (𝑁 − 2)) 𝑢 (𝑁 − 2)
]𝑇 𝑄×

[

𝑓0(𝑥̄ (𝑁 − 2)) + 𝑓1 (𝑥̄ (𝑁 − 2)) 𝑢 (𝑁 − 2)
]

+ 1
2
𝑥̄𝑇 (𝑁 − 2)𝑄𝑥̄(𝑁 − 2) + 1

2
𝑢𝑇 (𝑁 − 1)𝑅𝑢(𝑁 − 1)

+ 1
2
𝑢𝑇 (𝑁 − 2)𝑅𝑢(𝑁 − 2)

}

. (9)
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Now, we use this equation to obtain the suboptimal control 𝑢 (𝑁 − 2) in this step, with this we avoid the obtaining of the
type of Riccati equations in discrete domain, which is a very complex problem. However, notice that the equation given
by (9) is strongly convex with respect to 𝑢 (𝑁 − 2) and this fact guarantees the existence of a local minimum, however it
is only an approximation to optimal value of 𝑢 (𝑁 − 2). We proceed in the usual manner in order to find the suboptimal
control 𝑢 (𝑁 − 2):

𝑢̃ (𝑁 − 2) = −
[

𝑓 𝑇1 (𝑥̄ (𝑁 − 2))𝑄𝑓1 (𝑥̄ (𝑁 − 1)) + 𝑅
]−1 𝑓 𝑇1 (𝑥̄ (𝑁 − 1))𝑄𝑓0 (𝑥̄ (𝑁 − 1)) .

For the general case:

𝑢̃ (𝑁 − 𝑘) = −
[

𝑓 𝑇1 (𝑥̄ (𝑁 − 𝑘))𝐸𝑓1 (𝑥̄ (𝑁 − 𝑘)) + 𝑅
]−1 𝑓 𝑇1 (𝑥̄ (𝑁 − 𝑘))𝐸𝑓0 (𝑥̄ (𝑁 − 𝑘)) ,

𝐽𝑁−𝑘,𝑁 (𝑥̄ (𝑁 − 𝑘) , 𝑢 (𝑁 − 𝑘)) = 𝐽𝑁−𝑘+1,𝑁 + 1
2
{

𝑥̄𝑇 (𝑁 − 𝑘)𝑄𝑥̄(𝑁 − 𝑘) + 𝑢̃𝑇 (𝑁 − 𝑘)𝑅𝑢̃(𝑁 − 𝑘)
}

,

for all 𝑘 = 2, .., 𝑁.

where 𝐸 = 𝐻 for 𝑘 = 1 and 𝐸 = 𝑄, for 𝑘 = 2, 3, ..., 𝑁 . Notice that a particular choise for matrices 𝐻 and 𝑄 could give
different structures of the suboptimal controller. This suboptimal sequence obtained here guarantees that an approxi-
mation for the minimal value (in the local sense) of the performance index (4) is reached, see equation (7).
Now, the SDNLC proposed here, required 513 KB of flash memory of the Pixhawk autopilot of the UAV (it includes the
navigation algorithm exposed in Section 4), as the Pixhawk used in the UAV has 2 MB of flash memory, we can conclude
that both algorithms (control strategy and navigation routines) are feasible. It is important to say that the SDNLC used
here, does not use previous values of control parameters, as the optimal linear control, please see Santos16, so it reduces
the use of flash memory of the autopilot. Respect to the performance of the SDNLC, in Santos16 a comparative study was
conducted in outdoor environment: three control strategies (suboptimal nonlinear control, optimal linear control and
Proportional Derivative Control) were compared respect to two factors: energy consumption and error tracking (when
circles are considering as reference), see Tables 4 and 5 of Santos16. In general, the SDNLC presents a better perfor-
mance than the others controllers: less energy consumption, less error tracking and less error mean tracking, when 10
experiments were conducted in outdoor environment. Additionally, other advantages of the suboptimal nonlinear con-
trol used in this paper, are related to the tuning and its digital implementation of the controller: a preliminary selection
of two penalty matrices is required, just like in the Linear Quadratic Regulator (LQR) approach, but avoiding the curse
of dimensionality19 which implies the storage of weight parameters of the controller. In contrast, another kind of nonlin-
ear controllers for UAV, needs a complex tuning of their parameters, see for example, García21. As the SDNLC depends
of the plant model, then it could affect the closed loop performance of the plant. However, when is it compared with lin-
ear controllers, according with the experimental evidence presented in Santos16, the SDNLC resulted less affected in this
point when an outdoor environment was considered. Of course, the SDNLC only represents a local optimal, but as it was
mentioned above, the optimal control problem for nonlinear systems for Dynamic Programming approach is a still open
problem.

3.2 Subsystem z -𝜓
The model of this 4-rotor vehicle, given by equations (1) and (2), can be divided into small subsystems to simplify the imple-
mentation of the control algorithm previously exposed. Firstly, the equations describing the yaw angle 𝜓 and height 𝑧 are
considered; which correspond to vehicle rotation and the translation movement on the 𝑧 axis. This subsystem is described as
follows:

𝑧̈ (𝑡) = 𝑢 cos 𝜃 (𝑡) cos𝜙 (𝑡) − 𝑚𝑔
𝜓̈ (𝑡) = 𝜏𝜓 ,

The next step is to discretize these dynamic equations by using of the Euler’s approximation as follows:

𝑥𝑧,𝜓 (𝑘 + 1) = 𝑓0,𝑧𝜓
(

𝑥𝑧,𝜓 (𝑘)
)

+ 𝑓1,𝑧𝜓 (𝜃 (𝑘) , 𝜙 (𝑘))𝑈 (𝑘) , (10)
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where

𝑓0,𝑧𝜓 (𝑥𝑧,𝜓 (𝑘)) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥2,𝑧(𝑘)𝑡𝑠 + 𝑥1,𝑧(𝑘)
𝑥2,𝑧(𝑘) − 𝑔𝑡𝑠

𝑡𝑠𝑥4,𝜓 (𝑘) + 𝑥3,𝜓 (𝑘)
𝑥4,𝜓 (𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑓1,𝑧𝜓 (𝑘) =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
𝑡𝑠
𝑚
cos (𝜃(𝑘)) cos (𝜙(𝑘)) 0

0 0
0 𝑡𝑠

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑈 (𝑘) = [𝑢(𝑘) 𝜏𝜓 (𝑘)]𝑇 and 𝑡𝑠 is the sample time. This model has the form given in (3), and by the algorithm exposed in the
previous subsection, we can obtain the suboptimal controllers 𝑢̃(𝑁1 − 𝑘) and 𝜏𝜓 ∗ (𝑁1 − 𝑘

) in the following form:

𝑢̃(𝑁1 − 𝑘) = −𝐹1
(

𝑁1 − 𝑘
)

[

𝑥1,𝑧
(

𝑁1 − 𝑘
)

𝑥2,𝑧
(

𝑁1 − 𝑘
)

]

+ 𝐹2
(

𝑁1 − 𝑘
)

,

𝜏𝜓
∗ (𝑁1 − 𝑘

)

= −𝐺1

[

𝑥3,𝜓
(

𝑁1 − 𝑘
)

𝑥4,𝜓
(

𝑁1 − 𝑘
)

]

,

where
𝐹1

(

𝑁1 − 𝑘
)

=

[

𝑚𝑡𝑠 cos
(

𝜃
(

𝑁1 − 𝑘
))

cos
(

𝜙
(

𝑁1 − 𝑘
))

𝑟11𝑚2 + 𝐸22𝑡2𝑠 cos2 𝜃
(

𝑁1 − 𝑘
)

cos2 𝜙
(

𝑁1 − 𝑘
)

]

[

𝐸21
(

𝐸21𝑡𝑠 + 𝐸22
) ]

,

𝐹2
(

𝑁1 − 𝑘
)

=

[

𝑚𝑡𝑠 cos
(

𝜃
(

𝑁1 − 𝑘
))

cos
(

𝜙
(

𝑁1 − 𝑘
))

𝑟11𝑚2 + 𝐸22𝑡2𝑠 cos2 𝜃
(

𝑁1 − 𝑘
)

cos2 𝜙
(

𝑁1 − 𝑘
)

]

𝐸22𝑔𝑡𝑠,

𝐺1 =
(

𝑡𝑠
𝐸44𝑡2𝑠 + 𝑟22

)

[

𝐸43
(

𝐸43𝑡𝑠 + 𝐸44
) ]

.

and
𝐸𝑖𝑗 =

{

ℎ𝑖𝑗 , for 𝑘 = 1,
𝑞𝑖𝑗 , for 𝑘 > 1,

with

𝐸𝑧,𝜓 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐸11 𝐸12 0 0
𝐸21 𝐸22 0 0
0 0 𝐸33 𝐸34
0 0 𝐸43 𝐸44

⎤

⎥

⎥

⎥

⎥

⎦

.

where, ℎ𝑖𝑗 and 𝑞𝑖𝑗 are the elements of the matrices 𝐻𝑧𝜓 ≥ 0 and 𝑄𝑧𝜓 ≥ 0 respectively, which have appropriate dimensions.
That particular choice of matrices 𝐻 and 𝑄 guarantees that the position and velocity of the subsystem 𝑧-𝜓 are involved
in the control law.

3.3 𝑦 and 𝑥 trajectory control
The analysis of 𝑦−𝜙 subsystem is developed below, that is, the dynamic equations describing the rotation about the 𝑥-axis and
displacement along the 𝑦 axis. These related dynamic equation are:

𝑚𝑦̈ = 𝑢 cos 𝜃 sin𝜙 (11)
𝜙̈ = 𝜏𝜙.

The subsystem is discretized as was stated above, then the synthesized discrete sequence control is:
𝜏∗𝜙 (𝑁 − 𝑘) = −𝐹𝜙𝑥∗𝑦,𝜙 (𝑁 − 𝑘) ,
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where
𝐹𝜙 = 1

𝑒44𝑡2𝑠 + 𝑅𝜙

[

𝑒41𝑡𝑠 𝑒41𝑡2𝑠 𝑒43𝑡𝑠 𝑒43𝑡
2
𝑠 + 𝑒44𝑡𝑠

]

.

and 𝑒𝑖,𝑗 are the elements of,

𝐸𝑦,𝜙 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑒11 0 0 𝑒14
0 𝑒22 0 0
0 0 𝑒33 𝑒34
𝑒41 0 𝑒43 𝑒44

⎤

⎥

⎥

⎥

⎥

⎦

.

This matrix includes the elements of 𝐻 ≥ 0 and 𝑄 ≥ 0 (as in the previous subsection), which are the parameters used for the
optimization technique. Similar steps could made to synthesize the control law 𝜏𝜃 . For more details see Santos16.
Lets now with the following subsystem 𝑥 − 𝜃 described by:

𝑚𝑥̈ = −𝑢 sin 𝜃
𝜃̈ = 𝜏𝜃 ,

then the corresponding control input 𝜏𝜃 is given as follows:
𝜏∗𝜃 (𝑁 − 𝑘) = −𝐹𝜃𝑥∗𝑥,𝜃 (𝑁 − 𝑘) ,

where
𝐹𝜃 =

1
𝑒44𝑡2𝑠 + 𝑅𝜃

[

𝑒41𝑡𝑠 𝑒41𝑡2𝑠 𝑒43𝑡𝑠 𝑒43𝑡
2
𝑠 + 𝑒44𝑡𝑠

]

.

and 𝑒𝑖,𝑗 are defined as in the previous subsystem, considering a matrix 𝐸𝑥,𝜃 as follows:

𝐸𝑥,𝜃 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑒11 0 0 𝑒14
0 𝑒22 0 0
0 0 𝑒33 𝑒43
𝑒41 0 𝑒43 𝑒44

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐸𝑥,𝜃 (𝑖, 𝑗) =
{

ℎ2,𝑖𝑗 , for 𝑘 = 1,
𝑞𝑥,𝜃,𝑖𝑗 , for 𝑘 > 1.

.

Observe that an appropriate selection of matrices 𝑄 and 𝐻 in each one of performance index corresponding to each specific
subsystem gives the possibility that the control inputs 𝜏∗𝜃 , 𝜏∗𝜙 and 𝜏∗𝜓 are linear. Then, we choose this option in order to obtain
simpler controllers, but as it is showed in the next section, also another choice of the penalization matrices, gives a different
control structure.

4 OUTDOOR NAVIGATION

Although Santos16 presented some experimental results for outdoor navigation of an UAV by using of the SDNLC, the
algorithm was programmed without considering an avoiding obstacles task. We think that it is important to evaluate
the controller and autopilot performances, when optimizer control strategy and obstacle avoidance routines are together
programmed. So, in this section we present the method used to navigate in the presence of obstacles, specifically “trees". Using
a laser scanning sensor for the detection of them. The data obtained with this sensor, are analyzed to make the recognition of
the environment and the evasion of obstacles if necessary. Table 1 displays the parameters used by the evasion task, planning
and repulsion algorithm.

The navigation procedure by using the laser scanning sensor in the presence of trees is as follows:
1. At the beginning the initial position (𝑥0, 𝑦0, 𝑧0) of the vehicle is known. We also know the final position (𝑥𝑔𝑜𝑎𝑙, 𝑦𝑔𝑜𝑎𝑙, 𝑧0)

where the vehicle must arrive.
2. The takeoff phase is executed
3. The vehicle begins to navigate following a straight line while the path is free of obstacles.
4. If an obstacle is detected at a distance smaller than 𝑙𝑚, an identification procedure is initiated; where the dimensions and

the position of the obstacle are estimated.
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TABLE 1 Parameters used in the evasion, planning and repulsion algorithm

Parameters Value
Vehicle mass, (m) 1.5 kg
Measurement health, (𝐻𝑠) 150 u
Minimum distance to analyze, (𝑙𝑚) 0.4 m
Maximum distance to analyze, (𝑙𝑀 ) 5m
Minimum safety distance, (𝑙𝑠) 3𝑚
Maximum distance between, (𝑑𝑚) 0.15𝑚
consecutive points
Sample time, (𝑇 ) 0.01 s

5. The data of the obstacle will serve to initiate the process of “repulsion" which consists of moving away in the opposite
direction to the position of the tree, at a previously defined speed.

6. When the repulsion phase is over, the evasion process begins, which consists of surrounding the obstacle following a
circular path. Note that here the vehicle must decide whether to make the evasion on the right or left side according to the
analysis made in step 3.

7. The vehicle continues moving towards the final coordinates and the procedure begins to repeat itself again and again until
𝑥 ≈ 𝑥𝑔𝑜𝑎𝑙 and 𝑦 ≈ 𝑦𝑔𝑜𝑎𝑙.

8. Finally the landing phase is executed
This procedure can be seen graphically in Figure 1.

Y

Y

N

N

N

Path update

Set: 

Initial position (x0,y0,z0)

Final position (xgoal,ygoal,z0) 

FIGURE 1 Proposed method for the planning of trajectories, detection and evasion of obstacles.
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4.1 Acquisition and processing of data
A relative low cost Light Detection and Ranging (LiDAR) sensor has been chosen to detect the obstacles. Here, we consider
necessary to clarify that a vision sensor PixyCAM was tested too, some experimental results (without avoidance obstacles)
was reported by Garcia22. However, we noticed some disadvantages (respect to the LiDAR) of this vision sensor in the
avoidance obstacles, some of them are:

• High computational complexity. This disadvantage was mentioned by Zuo23, see Table 2.

• In order to improve the performance of the vision sensor is necessary to include more sensors, see for example
Courbon24 or the sensor Intel RealSense Depth Camera D45525.

• Vulnerability to the influence of light environment, this was mentioned by Qiping26. For the case of vision sensor
PixyCAM, only identifies regular shapes: circles, squares, etc., with high contrast colors. It represents a serious
disadvantage, due to the main task here is to avoid trees, and they do not have regular shapes.

• A calibration procedure of vision sensor always is necessary. It is necessary, for example, to compensate the light
variations, see for example Sala27, or Gaspar28, however, an offline training phase is required: images are collected
at known discrete points in pose space. For our main task: to detect trees and to avoidance them, it is not feasibility.

Platform SensorType Advantage Disadvantage Field
Quadrotor UAV RGB-D Camera Low Cost Poor robustness Indoor
Helicopter LADAR High Precision High power consumption Indoor+Outdoor
Quadrotor UAV Monocular camera

+IMU Light weight Low Reliability Indoor+Outdoor

Quadrotor UAV Binocular camera
+IMU

Light weight
+High Precision High computational complexity Indoor+Outdoor

TABLE 2 Comparison of sensors in UAV obstacle avoidance. Source: Zuo23.

Table 2 shows a comparison, given by Zuo23, of vision sensors and LAser Detection And Ranging (LADAR) sensors
for aerial vehicles. The LADAR sensor is recommended for use on conventional helicopters (with tail rotor), due to the
weight of the sensor, which also implies increasing the energy consumption of the vehicle. However, currently some laser
sensors are light, just like the Sweep v1.0 sensor (120 g), so it can be used on a quadrotor UAV.

Additionally, in contrast with the vision sensors, the LiDAR sensors are not easy to be affected by light changes
and they can work for 24 hours, see Qiping26. As it is explained below, the algorithm to process the data given by the
Sweep v1.0, is relative simple when it is compared with the Binocular camera plus IMU, see Tabla 2. Only an Arduino
Mega board is needed as signal adapter before to send the detected obstacles to the autopilot, and no extra sensor and
calibration procedure are required.

The laser sensor used here (sweep v1.0), rotates at a frequency of 5 Hz, it means that, in one second, it spins 5 times
and gets a point cloud representing the near environment. As the resolution of the sensor is 1 degree, follows that the
maximum amount of points that can be obtained is 360 per lap. These data are read by the Arduino Mega board,
for each data, a three parameters vector is obtained, which contains: distance, angle, and a reliability measurement
parameter, or "measurement health". In fact, the read data set 𝑊 = {𝑀𝑖|𝑖 = 1, 2, 3, ..., 𝑁} for each completed spin,
where 𝑀𝑖 = (𝑙𝑖, 𝜃̄𝑖,𝐻𝑖) is an ordered tuple formed by a distance, an angle and a reliability parameter; 𝑙𝑖 ∈ ℜ+ is the
distance to the object detected in meters, the angle 𝜃̄ represents the direction in which the measurement was made and
it can take values within (0, 2𝜋], and 𝐻𝑖 corresponds to the health of the measurement 𝑖, this parameter lies between
[0, 254], a value of 𝐻𝑖 closer to 254 indicates a more reliable measurement.
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In the figure 2 a coordinate system 𝑏(𝑥𝑏, 𝑦𝑏, 𝑧𝑏) linked to the body is established, note that 𝑧𝑏 is perpendicular to 𝑥𝑏 and 𝑦𝑏. So,
the installation of the laser sensor is done such that it is located in the center of mass of the quadrotor, with its angular deviation
value 𝜃̄ = 0 aligned with the 𝑥𝑏-axis. The sensor rotates periodically counterclockwise from the axis 𝑥+𝑏 , and its rotation axis
coincides with 𝑧𝑏-axis.

FIGURE 2 Mounting the laser scanning sensor on the experimental platform 8.

The data collected were subject to a filtering procedure in order to reduce the number of operations to be performed by the
Arduino Mega and also to remove measurements with large noise levels (taking reference to 𝐻𝑖). This filtering procedure
consists in a thresholding process, which eliminates those measurements that do not meet a health threshold previously
fixed and those that are outside of the minimum and maximum limits previously chosen. Figure 3 shows the distances
measured by the sensor in a time of 5 seconds, which is equivalent to just over 3 complete sweeps.

Tiempo (s)

0 1 2 3 4 5

D
is

ta
n

c
ia

 (
m

)

0

2

4

6

8

10

12
Distancia

FIGURE 3 Measurements of the laser scanning sensor without any post-treatment

For the thresholding process, define 𝑝𝑘 as a pair that belongs to 𝑊 , which represents the location (𝑙𝑘, 𝜃̄𝑘), of the object
identified in the 𝑘𝑡ℎ reading where 𝑘 = {1, 2, 3, 4,⋯ , 𝑛}, 𝑛 ≤ 𝑁 is the number of data that complies with:

𝑝𝑘 = {𝑀𝑖|𝐻𝑖 > 𝐻𝑠 and 𝑙𝑚 < 𝑙𝑖 < 𝑙𝑀}. (12)
In Figure 4 we have discarded all 𝑀𝑖 that do not comply with a reliability parameter 𝐻𝑖 > 𝐻𝑠. The discarded values are

those that can cause problems in the estimation of the position and dimensions of the obstacle, due to the noise presents in those
measurements.

Finally, Figure 5 shows the measurements that comply with condition given by (12), that is, the distance measurements were
subject to a thresholding process in order to reduce the number of data to be processed (similar to the one presented by Yu11),
this data set 𝑝 will be used to estimate the dimensions and location of the obstacles.

The filtered measurements are sent via serial communication from Arduino Mega board to the Pixhawk autopilot. But
the Pixhawk has also several additional tasks. In this way, communication with the Arduino Mega is done at a frequency
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FIGURE 4 Measurements obtained with the laser sensor when 𝐻𝑖 > 𝐻𝑠.
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FIGURE 5 Measurements obtained from the laser sensor that were selected for the analysis of the obstacles.

of 50Hz with a maximum duration of 50 microseconds. Exceed this communication rate can produce that the Pixhawk
board not be able to read all the data coming from the Arduino, it leads a time delay in the whole system (acquisition,
processing, communication and navigation). On average, the estimated delay is about 1.5 seconds. Of course, if there are
more obstacles in the environment, the amount of information increases, then more data must be sent to the Pixhawk
provoking that this time delay also experience an increase, since that for each detected point tow parameters must be sent
to Pixhawk: distance and angle, with a 6-byte format. In view of the recently discussed, experimental tests are a essential
issue, and a great challenge, because there is no previous information about the navigation environment. Although we
show that there are many advantages in the use of this type of sensor, but we also consider very convenient the integration
of this sensor with the Pixhawk autopilot in a single electronic board in order to remove the problem of delay in data
transmission. However, it is not a trivial problem.

4.2 Obstacle detection and collision avoidance
This section addresses the design of the collision avoidance algorithm, which will identify obstacles and generate new posi-
tions for the UAV in order to avoid a collision. Define an “obstacle" as one or several laser scan sensor measurements with a
magnitude smaller than a safe distance (𝑙𝑠), with respect to the vehicle.

In order to discriminate between several obstacles measurements during a single sweep, a maximum distance 𝑑𝑚 has been
established between points read from the same obstacle, ie; 𝑃𝑘𝑃𝑘−1 is the distance between 2 consecutive measurements and is
given by:

𝑃𝑘𝑃𝑘−1 =
√

(𝑥𝑘−1 − 𝑥𝑘)2 + (𝑦𝑘−1 − 𝑦𝑘)2, (13)
where 𝑥𝑘 and 𝑦𝑘 are the coordinates of each point identified as an obstacle. Notice that a single detected point is considered as
an obstacle.
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A point 𝑝𝑘 belongs to an obstacle if 𝑃𝑘𝑃𝑘−1 < 𝑑𝑚, where 𝑑𝑚 was defined above, otherwise a new set of points is generated
and the parameters of the previous obstacle are estimated.

To simplify the data processing in the autopilot, the obstacles were considered as circles of radius 𝑟𝑜𝑏𝑠 centered on (𝑥𝑜𝑏𝑠, 𝑦𝑜𝑏𝑠)
with respect to the inertial frame. 𝑟𝑜𝑏𝑠 is estimated for an obstacle with the following expression:

𝑟𝑜𝑏𝑠 =

√

(𝑥𝑘 − 𝑥1)2 + (𝑦𝑘 − 𝑦1)2

2
. (14)

The coordinates of the center of the obstacle are estimated by projecting 𝑙𝑜𝑏𝑠 at an angle 𝜃𝑜𝑏𝑠 with respect to the inertial frame,
where:

𝑙𝑜𝑏𝑠 =
∑𝑘

1 𝑙𝑛
𝑘

+ 𝑟𝑜𝑏𝑠 (15)
and

𝜃𝑜𝑏𝑠 =
∑𝑘

1 𝜃̄𝑛
𝑘

. (16)
where 𝑘 is the number of measurements included in an obstacle. The new position to be obtained by the UAV to keep a safe
distance from the object, and it is related to the distance between the UAV and the object when it last one invades the safe area.
This new coordinates are define as:

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑜𝑠 + (𝑙𝑠 − 𝑙𝑜𝑏𝑠 − Δ𝑟) sin(𝜃𝑜𝑏𝑠 + 𝜋) (17)
and

𝑦𝑛𝑒𝑤 = 𝑦𝑝𝑜𝑠 + (𝑙𝑠 − 𝑙𝑜𝑏𝑠 − Δ𝑟) cos(𝜃𝑜𝑏𝑠 + 𝜋). (18)
where 𝑥𝑝𝑜𝑠 and 𝑦𝑝𝑜𝑠 are the coordinates of the vehicle relative to the inertial system and Δ𝑟 is an extra radius to avoid repeating
the repulsion process continuously.

4.3 Path planning
In this section the evasion process is explained, and it is started once the identification and repulsion procedures have been
carried out satisfactorily. According to Figure 6 the location of the obstacle can be estimated with:

𝑥𝑜𝑏𝑠 = 𝑥𝑝𝑜𝑠 + 𝑙𝑜𝑏𝑠 sin 𝜃𝑜𝑏𝑠 (19)
and

𝑦𝑜𝑏𝑠 = 𝑦𝑝𝑜𝑠 + 𝑙𝑜𝑏𝑠 cos 𝜃𝑜𝑏𝑠. (20)

FIGURE 6 Estimating position and radius of an obstacle.

The knowledge of the location of the obstacle, together with the position and attitude of the vehicle allow to compute a new
path that leads the UAV to achieve a desired location avoiding collisions.
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FIGURE 7 Collision avoidance process.

• In Figure 7𝑎, the vehicle starts from (𝑥0, 𝑦0) towards the defined end point (𝑥𝑔𝑜𝑎𝑙, 𝑦𝑔𝑜𝑎𝑙), i.e., it begins with the tracking of
the original path (dotted black line), with a constant altitude while the sweep sensor performs periodic readings looking
for obstacles.

• Figure 7𝑏, if an obstacle is identified during the original path, the UAV computes a new trajectory towards a safe position.
• Figure 7𝑐, the vehicle navigates to the position computed with equations 17 and 18.
• Figure 7𝑑, once the UAV arrived to the position (𝑥𝑛𝑒𝑤, 𝑦𝑛𝑒𝑤), an arc segment trajectory is computed (blue dotted line)

which will surround the obstacle at a 𝑑𝑠 + Δ𝑟 distance from the (𝑥𝑜𝑏𝑠, 𝑦𝑜𝑏𝑠) point.
• Figure 7𝑒, the vehicle tracks the new circular path and it will conclude until the intersection with the original path occurs.

While the obstacle is evaded, the repulsion algorithm continues active to avoid collisions with objects that are on the new
trajectory. The above procedure is shown in the flow diagram in the Figure 1.

5 HARDWARE

The experimental platform is shown in Figure 8, it was built using a 550-millimeter carbon fiber quadcopter kit, the quadcopter
has an “X" configuration, the motors used are 920 kV. The flight controller is a Pixhawk of 3D Robotics. This autopilot has a
high performance, some important features are: it has a 32-bit processor STM32F427 with FPU, its main clock works at 168
Mhz, it has 256kb of RAM and 2mb of flash memory. It has two gyroscopes and two accelerometers, it has a barometer to
estimate the height. It also has different interfaces, such as 5 serial ports, 2 CAN ports, Futaba and Spektrum ports, PPM signal
input, PWM signal output ports for controlling motors, I2C ports, SPI and two ADC ports29. An external Ublox NEO-M8N
GPS, has been installed which has an accuracy in the range of 0.6m and 0.9m, and has internally build magnetometer to
estimate the guidance of the aircraft.

The batteries used are LiPo technology with a capacity of 4000mA and a discharge rate of 35C. For remote communication
with the aircraft, a 7-channel Futaba radio was used.

The laser sensor used to detect obstacles is the “Sweep 𝑣1 360⁃ Laser Scanner" wich is a scanning LiDAR sensor designed to
bring powerful 360 degrees sensing capabilities. Other important features are: It has a range of 40𝑚, 360 degree field of view, 2
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to 10𝐻𝑧 of rotation frequency. 5𝑣DC input, and 400 mA of power consumption30. An Arduino Mega was used to communicate
this sensor with the Pixhawk autopilot through serial communication configured at a speed of 115200 Baud. The hardware setup
can be observed more clearly in Figure 9.

FIGURE 8 Experimental platform used for navigation in outdoor environments.

FIGURE 9 Overview of the proposed hardware

6 EXPERIMENTAL RESULTS

This section presents the results obtained by using the algorithm presented above. This algorithm was implemented in the
experimental platform displayed in the Figure 8. Translational position measurements were obtained by using a GPS.

The control technique used to track the path was carried out with the sub-optimal finite-horizon non-linear control shown in
Section 3. The aerial mission performed by the vehicle is divided into 3 phases:

1. Takeoff: This phase was carried out manually, that is, the pilot sent the desired position 𝑧𝑝 using the radio control.
2. Navigation: The vehicle was settled completely autonomous with the fixed altitude 𝑧𝑝 and with the task of moving in a

straight line on the 𝑥-axis, it means, moving up to (𝑥𝑔𝑜𝑎𝑙 = 20, 𝑦𝑔𝑜𝑎𝑙 = 0). The algorithm previously described allows to
evade the trees that the UAV detected during its path.
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3. Landing: The pilot take control again of the aircraft and lands.
Figure 10, shows the first 3 state variables 𝑥, 𝑦 and 𝑧 which correspond to the position of the vehicle with respect to the earth

coordinates. It also shows the desired values which were modified by the algorithm of planning and collision avoidance since
initially the vehicle only had to track a straight line on the 𝑥-axis.
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FIGURE 10 UAV position on the 𝑥, 𝑦 and 𝑧 axes

Figure 11 shows the variables𝜙, 𝜃 and𝜓 which represent the angular position of the vehicle. These variables show the attitude
of the vehicle during navigation phase, notice that the yaw angle (𝜓) remained constant close to zero.
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FIGURE 11 Attitude signal, roll pitch and yaw

Figure 12 displays the translational velocity 𝑥̇, 𝑦̇ and 𝑧̇ experienced by the flying robot, we observe that these velocities are
smaller than 1𝑚∕𝑠. The position in 𝑧 had to remain constant, which means that the speed in altitude is very close to zero.
Furthermore, is easy to notice that the repulsion maneuvers were executed at 𝑡 = 30 𝑠 and 𝑡 = 120 𝑠 in 𝑥̇, when the vehicle was
moving in a straight line forward. However, when detecting an obstacle the UAV had to move back immediately, and a change
in the direction of speed occurred.

Figure 13 gives the tracking errors during navigation phase. These variables show the difference between the trajectory ref-
erence and the UAV position measured by the GPS. The average error for the 𝑥-position is 0.2330𝑚, while for 𝑦-position is
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FIGURE 12 Speed responses in the vehicle during navigation

0.2612𝑚, which we consider to be acceptable with respect to the inherent measurement error of the GPS presented during the
experiments. The error in 𝑧 is even lower and it is just 0.062𝑚, due to the fact that the altitude reference is constant. These aver-
ages were obtained with the following formula: 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟𝑥,𝑦,𝑧 =

∑𝑁
1 |𝑒𝑟𝑟𝑜𝑟𝑥,𝑦,𝑧(𝑘)|

𝑁
, where 𝑘 is the current sample and 𝑁

is the total number of samples of the signal. Signal errors of the trajectory tracking task illustrate the effectiveness of the
scheme combining the optimal non linear control strategy, the laser sensor by detecting obstacles and the obstacle avoid-
ance algorithm. In fact, the bounds of trajectory tracking error related with the real-time experiments are inside of the
established limits of the GPS precision (0.6 m to 0.9 m), consequently this experiment could be consider successfully.
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FIGURE 13 Tracking error signals on the 𝑥, 𝑦 and 𝑧 axes, during navigation

Figure 14 depicts the control signals computed during the aerial mission, these signals were presented in values of %PWM
levels in order to see how large or small is the signal that the speed controllers are sending to 3-phase motors. It can be see
that the control signal 𝑢𝑧 which corresponds to collective throttle, increases little by little. The input 𝜏𝜓 remains close to zero,
because the set-point of this angle was set to zero.

Finally, Figure 15 displays the 3 dimensional view of the flying robot performing the navigation and collision avoidance
tasks, which gives a more clear idea of the behavior of the vehicle throughout the experiment. The original desired trajectory
is represented by the green dotted line, which serves as a flight path reference for the aerial vehicle. However, as it detected
some obstacles, this reference was updated automatically. In cyan and blue colors we can see the updated reference and the
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FIGURE 14 Controllers signals during the tracking trajectory

measured real-time position respectively. It is also possible to observe that the vehicle reaches approximately the final reference
𝑥𝑔𝑜𝑎𝑙 = 20𝑚 but not in the 𝑦-axis, this was due to the fact that in the final position [𝑥𝑔𝑜𝑎𝑙, 𝑦𝑔𝑜𝑎𝑙] there were obstacles and it can
be seen how the vehicle tries to reach the this final position but the avoidance collision algorithm does not allow it.

According with Figure 15, the first detected obstacle by the laser sensor was in the coordinates (𝑥,𝑦,𝑧)=(5.6, 1.7, 1),
observe that firstly, the vehicle done a repulsive action and then the obstacle avoidance algorithm plans the trajectory
(a circle) in order to avoid that first tree. However, analyzing Figures 11, 12 and 13, where the attitude, speeds 𝑥̇, 𝑦̇, 𝑧̇
and tracking error signals are respectively represented, we can observe that those signal do not experienced any abrupt
change during these phases of repulsion and evasion and this performance feature is caused by the proposed control law,
and the same behavior is obtained for any detected tree. Consequently, the four control signals, do not present sudden
changes in the PWM levels, despite the time delays present in the control loop, see the Figure 14. A video of the complete
task can be seen in https://youtu.be/MvyI2OuHZEY.

7 CONCLUSIONS AND FUTURE WORK

The main contributions of this paper are, the outdoor navigation of a Quadrotor helicopter in presence of trees using a laser
scanning sensor, which was mounted on the aerial vehicle, trajectory planning and collision avoidance algorithms were proposed
with a geometric approach which allow to successfully perform the tasks of repulsion and evasion. The proposal is based on
a synthesized suboptimal nonlinear control sequence for finite horizon, allowing to penalize the energy consumption for the
vehicle. The obtained results were satisfactory in comparison to the few works reported in the literature, because most of them,
show only simulation results. In contrast, our results were presented in real-time, using an experimental platform, see Figure 8.
This technological challenge is non trivial to solve, since the system becomes complex as more sensors are added. Please notice
that Zuo23 exposed that one tendency in obstacles avoidance in UAVs is to optimize the memory occupation for process in
real time. In our proposal, this tendency was achieved by implementing a control strategy that optimize energy, together
with avoidance obstacles and trajectory planning algorithms, all them with the philosophy of be simple, whit reduced
memory usage, and using a single sensor to detect obstacles. Emphasizing that the proposed algorithm was tested for the
avoidance of trees at their lower part, nevertheless, as a future work, the algorithm will be applied for any obstacle that
can be detected by the Sweep laser sensor.
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