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a  b  s  t  r  a  c  t

In this  contribution,  we  obtain  a nonlinear  controller  for a  class of  nonlinear  time  delay  systems,  by  using
the inverse  optimality  approach.  We  avoid  the  solution  of  the Hamilton  Jacobi  Bellman  type  equation
and  the  determination  of the  Bellman’s  functional  by extending  the  inverse  optimality  approach  for
delay  free nonlinear  systems  to  time  delay  nonlinear  systems.  This  is  achieved  by combining  the Control
Lyapunov  Function  framework  and  Lyapunov-Krasovskii  functionals  of  complete  type.  Explicit  formulas
for an  optimal  control  are  obtained.  The  efficiency  of  the proposed  method  is illustrated  via  experimental
results  applied  to  a dehydration  process  whose  model  includes  a delayed  state  linear  part  and  a  delayed
nonlinear  part.  To  give  evidence  of  the  good  performance  of  the proposed  control  law,  experimental
comparison  against  an industrial  Proportional  Integral  Derivative  controller  and  optimal  linear  controller.
Additionally  experimental  robustness  tests  are  presented.

©  2016  Elsevier  Ltd. All  rights  reserved.

. Introduction

In the inverse optimality approach [1] for delay free nonlinear systems, the existence of a Control Lyapunov Function (CLF) [2] is
nstrumental in obtaining the optimal control. If the CLF is known, an assumption which is not always fulfilled, it can be used as a Bellman
unction to obtain explicit formulas of the nonlinear controller, thus avoiding the solution of the Hamilton Jacobi Bellman equation (HJB).

For time delay systems, the inverse optimality problem has been studied in a number of contributions. In [3], a feedback compensation
or linear time invariant systems with delayed input is presented by using a Lyapunov-Krasovskii functional of prescribed form. In [4],
he assumption of the existence of a Control Lyapunov-Krasovskii Functional (CLKF) is made and a solution to the inverse optimality
roblem is found, leading in some cases to the construction of stabilizing control laws of explicit form. Lyapunov-Krasovskii functionals
nd Lyapunov-Razumikhin functions are also used in the stabilization problem of nonlinear time delay systems, see [5–7].

More recently, complete type functionals [8], whose form is known whenever the nominal linear time delay system is stable, have
een successfully used for synthesizing controllers. In [9], a suboptimal controller for stable linear systems with pointwise and distributed
elays is designed. A guaranteed cost control strategy is proposed for the cases of linear time delay systems with structured disturbances

n [10], and of a class of nonlinear systems in [11].
In view of the above ideas, it seems natural to use complete type functionals in the inverse optimality approach. We  consider here

onlinear time delay systems that consist of a linear part which is exponentially stable and nonlinear disturbances satisfying a Lipschitz
ondition. The first step is to find the sufficient condition under which the complete type functional is a CLKF and the second is to extend
he delay free inverse optimality approach. As a consequence, we find the optimal controller that minimizes a performance index in the

ense of inverse optimality, without solving a Bellman type equation.

The obtained controller is experimentally tested on an open loop stable dehydration prototype. The nonlinearities in the model are
epresented by a polynomial equation that depends on the process variables [12]. It is compared with an industrial Proportional Integral
erivative (PID) controller, in terms of power consumption. Notice that in the industry of developed countries, drying is an energy intensive

∗ Corresponding author. Tel.: +52 771 7172000x6734;  fax: +52 77172000x2169.
E-mail addresses: lrodriguez@ctrl.cinvestav.mx (L. Rodríguez-Guerrero), omarj@uaeh.edu.mx (O. Santos-Sánchez), smondie@ctrl.cinvestav.mx (S. Mondié).
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rocess that represents from 10% to 25% of energy consumption [13], hence for optimal drying conditions, an optimal controller is preferred
o decrease drying time and fuel consumption [14].

The contribution is organized as follows. In Section 2, we briefly remind the fundamental ideas of the Lyapunov-Krasovskii complete
ype functional approach, the definition of CLKF and inverse optimality problem for delay free nonlinear systems. Next, we formulate the
roblem and the class of considered nonlinear time delay systems. The main results are presented in Section 3, where a sufficient condition
hich guarantees that the complete type functional is a CLKF for a class of delayed nonlinear systems is found, and the explicit nonlinear

ptimal control law is synthesized. Experimental results on a dehydration process illustrate the efficiency of our controller in Section 4.
inally, the conclusions are discussed in Section 5.

Notation: The function xt = x(t + �), � ∈ [−h, 0], is the restriction of the solution to the interval [t − h, t]. C is a space C([−h, 0],  R
n) of R

n-valued
ontinuous functions on [−h, 0]. PC([−h, 0],  R

n) is the space of piecewise R
n-valued continuous functions on [−h, 0] and it is supplied with the

tandard uniform norm [15]:

‖ϕ‖h = sup
� ∈ [−h,0]

‖ϕ(�)‖.

he Euclidean norm ‖·‖ is used for vectors and the corresponding induced norm for matrices. A continuous scalar function  ̨ is said to belong to
lass K if it is strictly increasing and ˛(0) = 0;  ̨ is said to belong to class K∞ if, in addition, ˛(s) → ∞ as s → ∞ [16]. U denotes a set of admissible
alues of the control variable u which are piecewise continuous functions.

. Preliminary results

In this section we review the main concepts and definitions of complete type Lyapunov-Krasovskii functionals, Control Lyapunov
unctions, and the scheme of inverse optimality for delay free nonlinear systems.

.1. Lyapunov-Krasovskii functionals of complete type

We  recall some key concepts and results on complete type functionals [8], where the Lyapunov matrix for time delay systems U(�) (see
17]) plays an essential role.

Consider time delay systems of the form:

ẋ(t) = A0x(t) + A1x(t − h), t ≥ 0, (1)

here the state x(t) ∈ R
n, h > 0 is the known delay, and A0, A1 ∈ R

n×n are real matrices. Let ϕ : [−h, 0] → R
n be an initial function. We

ssume that the function ϕ belongs to the space PC([−h, 0],  R
n), of piecewise continuous functions defined on the segment [−h, 0].

x(�) = ϕ(�), � ∈ [−h, 0].

he explicit form of the complete type functional V : PC([−h, 0],  R
n) → R  is presented in the following theorem.

heorem 1 ([8]). Given three symmetric matrices Wj, j = 0, 1, 2, let us define the functional

w(ϕ) = ϕT (0)W0ϕ(0) + ϕT (−h)W1ϕ(−h) +
∫ 0

−h
ϕT (�)W2ϕ(�)d�.

f there exists a Lyapunov matrix U(�) associated with the matrix W = W0 + W1 + hW2, the functional

V(ϕ) = ϕT (0)U(0)ϕ(0) + 2ϕT (0)

∫ 0

−h
U(−h − �)A1ϕ(�)d� +

∫ 0

−h
ϕT (�)

[
W1 +

(
h + �

)
W2
]
ϕ(�)d�

+
∫ 0

−h
ϕT (�1)AT1

[∫ 0

−h
U(�1 − �2)A1ϕ(�2)d�2

]
d�1, (2)

as time derivative along the solutions of system (1) given by

dV(xt)
dt

= −w(xt), t ≥ 0.

ere U(�), the Lyapunov matrix of system (1) associated to W = W0 + W1 + hW2 is the unique solution of the following equalities [8,17]:

U(−�) = UT (�), � ≥ 0, (Symmetry property)

d

dt
U(�) = U(�)A0 + U(� − h)A1, � ≥ 0, (Dynamic property)

−W = U(0)A0 + U(−h)A1 + AT0U(0) + AT1U(h). (Algebraic property)

This functional is shown to have the following bounds:
emma  1 ([8]). Let system (1) be exponentially stable. Given positive definite matrices Wj, j = 0, 1, 2, there exists ˛1 > 0 such that the complete
ype functional (2) admits the following quadratic lower bound:

˛1

∥∥ϕ(0)
∥∥2 ≤ V(ϕ), ϕ ∈ PC

(
[−h, 0],  R

n
)
.
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emma  2 ([8]). Let system (1) satisfy the Lyapunov condition [8]. Given symmetric matrices Wj, j = 0, 1, 2, for some positive ˛2 functional (2)
atisfy the inequality

V(ϕ) ≤ ˛2

∥∥ϕ∥∥2

h
, ϕ ∈ PC

(
[−h, 0],  R

n
)
.

The main ideas of the CLKF approach [6], are expressed in terms of complete type functionals. Consider time delay systems affine in the
ontrol input of the form

ẋ(t) = f (xt) + g(xt)u(t), (3)

here

f (xt) = A0x(t) + A1x(t − h) + F(x(t), x(t − h)),

g(xt) = B(x(t), x(t − h)).
(4)

ere, the smooth functionals f : C → R
n and g : C → R

n×m are bounded on bounded sets with f(0) = 0, so that the system has zero solution
hen u ≡ 0. The control u ∈ R

m is a piecewise continuous function and the initial condition is given by a continuous vector valued function
0 = ϕ, ϕ : [−h, 0] → R

n.
We present now the new definition of CLKF for complete type functionals:

efinition 1. A complete type functional V(xt) : C → R
+, whose explicit form is given by (3) is called a Control Lyapunov-Krasovskii

unctional (CLKF) for system (3) and (4) if there exist a control law u and scalars ˛1, ˛2 such that

˛1

∥∥ϕ(0)
∥∥2 ≤ V(ϕ) ≤ ˛2

∥∥ϕ∥∥2

h
,

dV(xt)
dt

∥∥∥
(3)–(4)

= �0(xt) + �T1(xt)u < 0,

nd

�T1(xt) = 0, for xt /= 0 ⇒ �0(xt) < 0,

or all piecewise continuous functions ϕ : [−h, 0] → R
n. Here

�0(xt) = −xT (t)W0x(t) − xT (t − h)W1x(t − h) −
∫ 0

−h
xT (t + �)W2x(t + �)d� + 2

[
U(0)x(t) +

∫ 0

−h
U(−h − �)A1x(t + �)d�

]T
F(x(t), x(t − h))

nd

�T1(xt) = 2

[
U(0)x(t) +

∫ 0

−h
U(−h − �)A1x(t + �)d�

]T
B(x(t), x(t − h)).

.2. Inverse optimality approach for delay free nonlinear systems

We  introduce the definition of Control Lyapunov Function for systems evolving on R
n and affine in the control inputs:

ẋ(t) = f0(x) + f1(x)u, (5)

here all entries of vector f0 and the n × m matrix f1 are smooth functions on R
n, and f(0) = 0. We  assume that the control inputs are

estricted to take values in some subset of R
m, u ∈ U ⊆ R

m.

efinition 2 ([18]). A proper and positive definite smooth function

Ṽ : R
n → R

+

s said to be a Control Lyapunov Function (CLF) (with respect to control variables taking values in U)  if

inf
u ∈ U

{
Lf0 Ṽ + Lf1 Ṽu

}
< 0, ∀x /= 0,

here Lf0 Ṽ =
(
∂Ṽ
∂x

)T
f0, Lf1 Ṽ =

(
∂Ṽ
∂x

)T
f1.

The inverse optimality problem for delay free nonlinear affine systems of the form (5) is introduced in [1]. Assume that Ṽ(x) is a Control
yapunov Function for this system. This means that Ṽ(x) is a positive definite, continuously differentiable function and there exists a control
aw u such that the derivative along the solutions of system (5) is

dṼ(x)
∣∣∣∣ =  0(x) +  T1(x)u < 0,
dt
(5)

here  0 ∈ R,

 0(x) = ∇xṼ(x) · f0(x)
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nd  1 ∈ R
m,

 1(x) =
[∇xṼ(x)T f1(x)

]T
.

s we assumed that Ṽ(x) is a CLF for (5), then if x /= 0 and  1(x) = 0 we have that  0(x) < 0 and the asymptotic stability of system (5) is
uaranteed by suitable input u. We  are then able to define the following positive definite scalar functions, which are well defined because
hey depend on the terms of the derivative of Ṽ(x)

q(x) �  T1(x) 1(x) +
√
 0(x)2 +

[
 T1(x) 1(x)

]2
,

r(x) �

1
4
 T1(x) 1(x)

dr(x)
,

here

dr(x) =  T1(x) 1(x) +  0(x) +
√
 0(x)2 +

[
 T1(x) 1(x)

]2
.

onsider now the performance index:

J̃ =
∫ ∞

0

fm(x, u)dt, (6)

here

fm(x, u) = q(x) + r(x)uTu

s a positive definite function. The Hamilton Jacobi Bellman (HJB) equation associated to system (5) and the performance index (6) is given
y

min
u

(
dṼ(x)
dt

∣∣∣∣
(5)

+ fm(x, u)

)
= 0. (7)

t is easy to verify that the function Ṽ(x) satisfies (7), hence it is a Bellman’s function. Then, the optimal control

u∗ = −1
2
 1(x∗)
r(x∗)

s obtained by differentiating equation (7) with respect to u [19].
Based on these ideas, we present our main results in the next section.

. Problem formulation and main result

Consider a single state delay system of the form

ẋ(t) = A0x(t) + A1x(t − h) + F(x(t), x(t − h)) + B(x(t), x(t − h))u(t), (8)

here the linear part of the system and initial condition are defined as in (1), and the input u ⊆ U ∈ R
m. We consider the following

ssumptions:

ssumption 1. The linear system is exponentially stable or, when matrix B is constant, there exists a preliminary stabilizing control law
iven by ũ = K0x(t) + K1x(t − h) + u.
ssumption 2. The matrix B(x(t), x(t − h)) ∈ R
n×m is a continuous function with respect to its arguments.

ssumption 3. Let ω̃(xt) a Lipschitz function, then
∥∥B(x(t), x(t − h) ω̃(xt))

∥∥ ≤ L1‖xt‖h, with L1 > 0, and ‖xt‖h < ı1.

ssumption 4. The nonlinear part, described by the unknown function F (x(t), x(t − h)) ∈ R
n, satisfies the condition:∥∥F (x(t), x(t − h))

∥∥ ≤ ˛
∥∥x(t)∥∥+ ˇ

∥∥x(t − h)
∥∥ , (9)

here ˛,  ̌ ∈ R
+.

We want to synthesize a nonlinear optimal control law u(t) such that the closed loop system is stable. To do so, we extend the inverse
ptimality approach for delay free systems [1] to this particular case of nonlinear time delay systems. We  first find the sufficient condition
uaranteeing that the complete type functional (2) is a CLKF for system(8). Then, by taking the CLKF as a Bellman functional and considering
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he dynamic programming approach with a specific performance index we  are able to find the optimal nonlinear controller without solving
he HJB type equation. The time derivative of the functional (2) along the trajectories of system (8) is

dV(xt)
dt

∣∣∣
(8)

= −xT (t)Wx(t) + 2xT (t)U(0)[F(x(t), x(t − h)) + B(x(t), x(t − h))u(t)]

+2[F(x(t), x(t − h)) + B(x(t), x(t − h))u(t)]T
∫ 0

−h
U(−h − �)A1x(t + �)d� + xT (t)[W1 + hW2]x(t) − xT (t − h)W1x(t − h)

−
∫ 0

−h
xT (t + �)W2x(t + �)d�,

= −ω0(xt) + 2[F(x(t), x(t − h)) + B(x(t), x(t − h))u(t)]Tω1(xt),

here

ω0(xt) = xT (t)W0x(t) + xT (t − h)W1x(t − h) +
∫ 0

−h
xT (t + �)W2x(t + �)d� (10)

nd

ω1(xt) = U(0)x(t) +
∫ 0

−h
U(−h − �)A1x(t + �)d�. (11)

his can be rewritten as

dV(xt)
dt

∣∣∣
(8)

= �0(xt) + �T1(xt)u(t), (12)

here �0 ∈ R,

�0(xt) = −ω0(xt) + 2ωT1(xt)F(x(t), x(t − h)) (13)

nd �1 ∈ R
m,

�T1(xt) = 2ωT1(xt)B(x(t), x(t − h)). (14)

bserve that, as in [11] if the functional �T1(xt) /= 0 for all xt /= 0, a nonlinear control law can be applied. According to Definition 1, when
he functional �T1(xt) = 0 but xt /= 0, which means that the system response has not converged to the origin, the sufficient condition that
uarantees that the system (8) is asymptotically stable is that the term �0(xt) is negative, hence in the next section we verify the conditions
nder which the inequality

dV(xt)
dt

∣∣∣
(8)

= �0(xt) = −ω0(xt) + 2ωT1(xt)F(x(t), x(t − h)) < 0. (15)

s satisfied. Substituting (10) and (11) into the previous expression, we  obtain

dV(xt)
dt

∣∣∣
(8)

= −xT (t)W0x(t) − xT (t − h)W1x(t − h) −
∫ 0

−h
xT (t + �)W2x(t + �)d�

+ 2

[
U(0)x(t) +

∫ 0

−h
U(−h − �)A1x(t + �)d�

]T
F(x(t), x(t − h)). (16)

.1. Main result

In this section, the condition under which the functional (2) is a CLKF for system (8) is presented. The result is then employed in the
esign of the nonlinear control law. Moreover, it is proved that the performance index is bounded.

.1.1. Sufficient conditions for V(xt) to be a CLKF
The following proposition provides sufficient conditions under which a complete type functional is a CLKF.

roposition 1. Let the nonlinear time delay system (8) and let positive definite matrices Wj ∈ Rn×n, j = 0, 1, 2, W = W0 + W1 + hW2 be given. If
here exists a scalar � > 0 such that the matrix

E =

⎡
⎢⎢⎢
W0 − � ¯̨ In 0n×n 0n×n −U(0)

0n×n W1 − � ¯̌ In 0n×n 0n×n

⎤
⎥⎥⎥

(17)
⎢⎢⎣ 0n×n 0n×n
1
h

W2

s̄2
−In

−U(0) 0n×n −In �In

⎥⎥⎦
s positive definite, then the complete type functional V(xt) given by (2) is a Control Lyapunov-Krasovskii Functional for system (8).
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roof 1. Consider equation (16), in order to majorize the quadratic term in W2, in (16) we proceed as follows: As the nominal linear system
1) is assumed to be asymptotically stable, U(0) is a positive definite matrix [20]. This in turn implies that the term S(�) = U(−h − �)A1 ∈ R

n×n

s not equal to the zero function for all � ∈ [− h, 0]. Let us define

s̄ = sup
� ∈ [−h,0]

‖S(�)‖. (18)

s

ST (�)S(�) ≤
∥∥S(�)

∥∥2

e obtain that

ST (�)S(�)∥∥S(�)
∥∥2

≤ In,

nd

1
s̄

≤ 1

sup� ∈ [−h,0]

∥∥S(�)
∥∥ ≤ 1∥∥S(�)

∥∥ , � ∈ [−h, 0].

hen, the term in W2 admits the majorization

∫ 0

−h
xT (t + �)W2x(t + �)d� ≥

∫ 0

−h
xT (t + �)

(
S(�)∥∥S(�)
∥∥
)T
W2

(
S(�)∥∥S(�)
∥∥
)
x(t + �)d�

≥
∫ 0

−h
xT (t + �)ST (�)

W2

s̄2
S(�)x(t + �)d�,

nd the Jensen inequality implies that

−
∫ 0

−h
xT (t + �)W2x(t + �)d� ≤ −1

h

(∫ 0

−h
S(�)x(t + �)d�

)T
W2

s̄2

(∫ 0

−h
S(�)x(t + �)d�

)
. (19)

eplacing (19) into (16), we get

dV(xt)
dt

∣∣∣
(8)

≤ −xT (t)W0x(t) − xT (t − h)W1x(t − h) − 1
h

(∫ 0

−h
S(�)x(t + �)d�

)T
W2

s̄2

(∫ 0

−h
S(�)x(t + �)d�

)

+ 2xT (t)U(0)F(x(t), x(t − h)) + 2

[∫ 0

−h
S(�)x(t + �)d�

]T
F(x(t), x(t − h)).

pplying the S-procedure [21] as in [22], we add and subtract the term

±�FT (x(t), x(t − h))F(x(t), x(t − h)), �  > 0.

e  obtain

dV(xt)
dt

∣∣∣
(8)

≤ −	T

⎡
⎢⎢⎢⎢⎢⎣

W0 0n×n 0n×n −U(0)

0n×n W1 0n×n 0n×n

0n×n 0n×n
1
h

W2

s̄2
−In

−U(0) 0n×n −In �In

⎤
⎥⎥⎥⎥⎥⎦	 + �FT (x(t), x(t − h))F(x(t), x(t − h)),

here In is the identity matrix of n dimension, 0n×n is a n × n block of zeros,

	T =
[
x(t), x(t − h),

∫ 0

−h
S(�)x(t + �)d�, F(x(t), x(t − h))

]

nd from the assumption that the nonlinear function F(x(t), x(t − h)) satisfies (9) we  get
�FT (x(t), x(t − h))F(x(t), x(t − h)) ≤ � ¯̨ xT (t)x(t) + � ¯̌ x(t − h)T x(t − h),

or some ¯̨ , ¯̌
 ∈ R

+. Using this inequality, we arrive at

dV(xt)
dt

∣∣∣
(8)

≤ −	TE	,

ith matrix E given by (17) and the proposition is proved. �
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emark 1. The matrix parameters Wi, i = 0, 1, 2, and � could be found by considering (17) as a Linear Matrix Inequality (LMI) (E > 0), under
he restriction W = W0 + W1 + hW2.

.1.2. Synthesis of the optimal nonlinear control law via inverse optimality approach
In view of Proposition 1, we can now extend the inverse optimality approach for delay free nonlinear systems proposed in [1] to time

elay systems of the form (8).

roposition 2. Suppose that the functional V(xt) given by (2) satisfies the condition established in Proposition 1, then the optimal control law

u∗(t) =

⎧⎨
⎩−1

2
�1(x∗

t )
r(x∗

t )
, �1(x∗

t ) /= 0

0, �1(x∗
t ) = 0, or x∗

t = 0

, (20)

tabilizes the system (8) in the local sense and minimizes the performance index (21).

roof 2. Assume that functional V(xt) is a CLKF of the system (8), and consider the following performance index:

J =
∫ ∞

0

[
q(xt) + r(xt)uTu

]
dt, (21)

here q(xt) and r(xt) are defined as follows:

q(xt) =
[
�T1(xt)�1(xt)

]
+
√

[�0(xt)]
2 +
[
�T1(xt)�1(xt)

]2
, (22)

r(xt) =
1
4

[
�T1(xt)�1(xt)

]
dr(xt)

,

dr(xt) = �T1(xt)�1(xt) + �0(xt) +
√

[�0(xt)]
2 +
[
�T1(xt)�1(xt)

]2
,

ith �0(xt) and �1(xt) are given by equations (13) and (14). The functionals q(xt) and r(xt) are strictly positive definite and these depend on
he derivative of V(xt) therefore they are well defined. In fact, it is not hard to see that the functional q(xt) is definite positive when �1(xt) /= 0.
ow, for the functional r(xt), it is clear that dr(xt) is positive definite when �1(xt) /= 0: observe that �0(xt) < 0 and we  can suppose that

r(xt) ≤ 0, which implies that �T1(xt)�1(xt) +
√

[�0(xt)]
2 +
[
�T1(xt)�1(xt)

]2 ≤ −�0(xt), (−�0(xt) > 0). Squaring on both sides, we arrive
t [

�T1(xt)�1(xt)
]2 + �T1(xt)�1(xt)

√
[�0(xt)]

2 +
[
�T1(xt)�1(xt)

]2 ≤ 0,

hich is not possible. Therefore dr(xt) > 0 when �0(xt) < 0 and �1(xt) /= 0.
Next, the HJB equation associated to system (8) and to the performance index J is given by

min
u

(
dV(xt)
dt

∣∣∣
(8)

+ q(xt) + r(xt)uTu

)
= 0. (23)

eplacing (12) into (23) and computing the first derivative with respect to u, we  get the control law

u∗ = −1
2
�1(x∗

t )
r(x∗

t )
.

s the second derivative of (23) with respect to u* is equal to 2r(x∗
t ) > 0, we  are in presence of a minimum, hence the control law is optimal.

he stability of the closed loop is ensured because V(x∗
t ) is a CLKF and the HJB equation is satisfied with the control law u* (see Appendix).

evertheless, a singular point can appear in the control law when the function �1(x∗
t ) = 0, for some x∗

t /= 0, which makes that r(x∗
t ) is

ndefined. This singularity in the control law must be removed making u* = 0 when �1(x∗
t ) = 0. �

emark 2. The control law (20) is given by

u∗(t) = 2

⎛
⎜⎜⎝
�1
(
x∗
t

)(
�T1
(
x∗
t

)
�1
(
x∗
t

)
+ �0

(
x∗
t

)
+
√
�2

0

(
x∗
t

)
+
[
�T1
(
x∗
t

)
�1
(
x∗
t

)]2)
�T1
(
x∗
t

)
�1
(
x∗
t

)
⎞
⎟⎟⎠ , (24)

here �0(x∗
t ) and �T1(x∗

t ) /= 0, are given by (13) and (14), respectively. Notice that Assumption 3 implies that functional �T1(x∗
t ) is locally

ispchitz i.e., it satisfies
∥∥�1(x∗

t )
∥∥ ≤ ˛0

∥∥x∗
t

∥∥
h
, for some ˛0 > 0, and

∥∥x∗
t

∥∥
h
< ı. The term �0

(
x∗
t

)
satisfies

∣∣�0(x∗
t )
∣∣ ≤ ˛1

∥∥x∗
t

∥∥2

h
, where

1 =
∥∥W0

∥∥+
∥∥W1

∥∥+ h
∥∥W2

∥∥+
[

max
� ∈ [0,h]

∥∥U(�)
∥∥(1 + h

∥∥A1

∥∥)] L1, and L1 is obtained as:
∥∥F(x∗(t), x∗(t − h))

∥∥ ≤ ˛
∥∥x∗(t)

∥∥+ ˇ
∥∥x∗(t − h)

∥∥ ≤
1

∥∥x∗
t

∥∥
h
, L1 =  ̨ + ˇ,

∥∥x∗
t

∥∥
h
< ı. Then, the norm of the numerator of the control law (24) satisfies∥∥∥∥�1 (x∗

t )

(
�T1 (x∗

t )�1 (x∗
t ) + �0 (x∗

t ) +
√
�2

0

(
x∗
t

)
+
[
�T1
(
x∗
t

)
�1
(
x∗
t

)]2)∥∥∥∥ ≤ ˛2

∥∥x∗
t

∥∥3

h
,



4

w

t∥∥
t

3

b
t

w

T

a

O
h

w

4

m
b

4

g
s
t

•

•

•

•
•
•

•

w
o

2 L. Rodríguez-Guerrero et al. / Journal of Process Control 40 (2016) 35–49

here ˛2 = 4
(
˛3

0 + ˛0˛1
)

and
∣∣�T1 (x∗

t

)
�1
(
x∗
t

)∣∣ ≤ ˛2
0

∥∥x∗
t

∥∥2

h
, as the term in the numerator has a higher degree than the denominator,

he convergency rate of the numerator is greater, therefore when
∥∥x∗
t

∥∥
h

→ 0, u*(t) → 0, and for all ε̃ > 0, there exists ı > 0 such that

x∗
t

∥∥
h
< ı (ε̃) ⇒

∥∥u∗(t)
∥∥< ε̃. This implies that the complete type functional V(x∗

t ) satisfies the small control property [6], and we  conclude

hat the control law u* is continuous at x∗
t = 0.

.1.3. Proof of convergency of the integral of the performance index
In order to verify that the integral (21) converges, we  present the following analysis which demonstrates that the performance index is

ounded. Consider the system (8) and start from the assumption that the functional V(xt) given by (2) is a CLKF. The HJB equation implies
hat

dV(x∗
t )

dt

∣∣∣∣
(8),u=u∗

= −q(x∗
t ) − r(x∗

t )u
∗Tu∗,

here x∗
t is the optimal trajectory generated by u*. Now, integrating from 0 to ∞ we get

lim
t→∞

V(x∗
t ) − V (x0) = −

∫ ∞

0

(
q(x∗

t ) + r(x∗
t )u

∗Tu∗)dt.
he fact that V(xt) is a CLKF guarantees the asymptotic stability of system (8), hence

lim
t→∞

V(x∗
t ) = 0,

nd we obtain

V(ϕ) =
∫ ∞

0

(
q(x∗

t ) + r(x∗
t )u

∗Tu∗)dt.
bserve that this is the optimal value for the performance index given by (21), which is the functional V(xt) evaluated at the initial condition,
ence ∣∣V (ϕ)

∣∣ = V (ϕ) ≤ M,

here M is a positive scalar. We  conclude that (21) is bounded by M .

. Inverse optimal control of a dehydration prototype

In this section, experimental results on a dehydration process are carried out, thus extending the simulation results in [23]. The experi-
ental platform and its mathematical model are introduced first. Stabilization tests, response to disturbances, and energy savings achieved

y our optimal design are contrasted with an industrial PID controller.

.1. Description of the dehydration prototype

It is worth mentioning that our objective is to reach and to maintain a desired constant temperature setpoint, and to test the performance
iven by the control law (20), which minimizes the index (21). The prototype emulates an industrial atmospheric dehydrator and has a
imilar design as the one presented in [24]. It consists of a closed box with a wind tunnel as output and a tube that recycles the hot air into
he system. The main elements of the prototype are:

An electrical grid used as the source of heat (the actuator). The temperature in the box is regulated by the voltage that is applied. This
voltage is our control input.
A low power stage: The output value of the control law is converted to a Pulse-Width Modulation (PWM)  signal, in a rank of 0–5 volts,
and then it is sent to a high power stage.
A high power stage: The PWM  signal from the low power stage is applied to a set of electronic circuits. First the AC voltage is converted
to DC voltage and then according to the PWM  signal the control is applied to the electrical grid. Considering a liner relationship, when
the low power stage provides 5 V in the high power stage we  obtain 180 V.
The process variable (temperature) measured by using the temperature sensor LM35 with a rate of 10 mV/◦C
A fan producing a constant air flow of 2.1 m/s. This value was chosen according to recommendations in the specialized literature [25].
A Data Acquisition Card (DAQ USB-6008) and software LabView of National Instruments used to implement the control law and store
the process data. The sample time is 0.5 s.
An industrial PID Honeywell DC1040 with maximum precision of ±1 ◦C of cold junction compensation, ±5% of maximum deviation in
the linear output 4–20 mA,  automatic compensation of dead zone, and with a thermocouple J type of extended rate in the input.

Fig. 1 shows the diagram of the prototype. The air flow passes through the electrical grid where it is heated, then it reaches the plate

here the product (some slices of tomatoes) and the temperature sensor are placed. Part of the air goes through the wind tunnel and the

ther part is recycled. The temperature value is measured and used to compute the control voltage.
The hot air recycling loop induces a state delay, therefore the process is modeled as

ẋ(t) = a0x(t) + a1x(t − h) + bu(t) + f (x(t), x(t − h)), (25)
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Fig. 1. Diagram of the dehydration prototype.
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Fig. 2. Step response of the dehydration process.

here the temperature value is the state variable x(t), the control input u(t) is the energy applied to the actuator. Following the discussion
n [12], the nonlinearity is assumed to be a polynomial function depending on the process variable

f (x(t), x(t − h)) = cx2(t) + dx2(t − h) + ex3(t) + kx3(t − h). (26)

he time delay h is found heuristically to be of 10 s. All parameters are estimated by using a least square recursive method for different
peration regions. The Lyapunov matrix U(�), � ∈ [0, 10] is constructed by using the semi-analytical method [8]. The control law is computed
ccording to (20) and the integral terms of (10) and (11) are approximated by using the Simpsonś rule [26].

It is worthy of mention that despite the fact that system (21) is controllable, experimental results carried out with feedback exact linear-
zation control law gave a poor performance because the error between the nominal and the approximated model cannot be eliminated.
n fact, consider the nominal system ẋ(t) = a0x(t) + g(xt) + bu(t), where g(xt) = a1x(t − h) + f(x(t), x(t − h)), and the feedback linearization
ontrol law u(t) = u2 − 1

b̃
g̃(xt), here g̃(xt) is the polynomial approximation of the nominal value g(xt) [12], and assume that a0 ≈ ã0, b ≈ b̃,

here ã0 and b̃ are  the estimated parameters of the nominal parameters a0 and b. The closed loop system is ẋ(t) = a0x(t) + bu2 + �(xt)
here �(xt) = g(xt) − g̃(xt), and

∣∣�(xt)
∣∣ ≤ m, m > 0, is the error between the nominal and the approximated systems. Although this error

s bounded in a region (Weierstrass Approximation Theorem [27]), and the solutions of the nominal system and the perturbed system
re exponentially bounded (continuity properties [8]), for this process, the error affects the system response, and as a consequence, the
roduct quality.

Now, we want to test the optimal nonlinear control performance by comparing it against an industrial PID controller Honeywell DC1040.
otice that, to get a functioning controller, one must consider filtering of the measured signal, protection for integral windup, as well as
umpless mode and parameter changes [28]. Moreover, in process control more than 95% of the control loops are of PID type, and 20%
f the loops use “factory tuning”, i.e., operate with default parameters set by the controller manufacturer [29]. Here, the PID controller is
uned according to the Ziegler-Nichols tuning rules [30] based on the step response of the plant which is shown in Fig. 2.

The dehydration process is represented by the transfer function

X(s)
U(s)

= Ke−hs

Ts + 1
, (27)

here T = 195 s, h = 4 s and K = 0.68, and the obtained gains for the PID are Kp = 58.5, Ki = 7.3 and Kd = 117. This transfer function is a first order

inear system with input delay, it can be viewed as a simplified model of a thermal process [31]. The parameters h, T and K were obtained
rom Fig. 2, by using the well know step response method [30,31]. Linear models (first and second order) with input delay are currently
sed in the industry by the software Expert-Tune [32] on its product PIDLoop Optimizer, which uses algorithms for a PID robustly tuned.



44 L. Rodríguez-Guerrero et al. / Journal of Process Control 40 (2016) 35–49

0 100 200 300 400 500 600 700 800 900 1000
20

40
50
60

T
em

p
er

at
u

re
 (

°C
) 

   
  

Time (s)

0 100 200 300 400 500 600 700 800 900 1000
0

5

C
o

n
tr

o
l

(V
) 

   

Time (s)

0 100 200 300 400 500 600 700 800 900 1000

0

20

40

E
rr

o
r

(°
C

) 

Time (s)

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

P
o

w
er

 (
W

) 

Time (s)

PID
ONL

Fig. 3. Stabilizing test, setpoint 50 ◦C.
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Fig. 4. Stabilizing test, setpoint 55 ◦C.

.2. Stabilizing experimental results

The first experiment consists in stabilizing the temperature at 50 ◦C. The estimated parameters for this setpoint are: a0 = −0.1346,
1 = 0.0513, b = 0.0513, c = 0.0457, d = −0.5402, e = 0.21007 and k = −1.0467 . We  consider the values: W0 = 200, W1 = W2 = 100,

 = 1300, U(0) = 5854.630, the scalars s̄ = 300.875, ¯̨  = ¯̌ = 0.017 and � = 346020. The matrix (17) has the following eigenvalues
346119.0601, 0.9397, 0.00041, 0.00022

}
. The variables depicted on Figs. 3–10 are the temperature, the control voltage, the tempera-

ure error, and the power consumption in the low power stage. The constants given in the Remark 2 are ˛0 = 1 × 106, ˜̨ 0 = 9 × 105 and
1 = 1601.3.

The estimated parameters for a setpoint of 55 ◦C are: a0 = −0.0719, a1 = −0.0441, b = 5.446 × 10−4, c = 0.0135, d = 0.3968, e = −0.0795 and
 = −0.3637 . The gains are: W0 = 500, W1 = W2 = 100, W = 1600, U(0) = 9502.363, the scalars ¯̨  = ¯̌ = 0.015, � = 444440 and s̄ = 419.994. The
igenvalues of matrix (17) are

{
444809.452, 30.548, 0.000038, 0.001

}
. The system response is shown in Fig. 4.

For a setpoint of 60 ◦C the parameters are: a0 = −3.1345, a1 = 0.6312, b = 0.0017, c = 9.9308, d = −3.8446, e = −8.3475 and k = 3.8023. We
onsider the values: W0 = 300, W1 = 200, W2 = 100, W = 1500, U(0) = 244.271, the scalars ¯̨  = ¯̌

 = 0.5, � = 790 and s̄ = 154.193. The matrix
17) has the following eigenvalues

{
867.9511, 24.5440, 0.0052, 2.5

}
and the system response is given in Fig. 5.

Fig. 6 shows the experimental results for a setpoint of 70 ◦C. The estimated parameters are: a0 = −3.5102, a1 = 0.6139, b = 8.7524 × 10−4,

 = 7.8744, d = −2.3229, e = −5.2335 and k = 1.8404 and the gains are: W0 = 600, W1 = 500, W2 = 100, W = 2100, U(0) = 303.7651, the scalars

¯  = ¯̌
 = 0.8, � = 740, s̄ = 186.508 and the eigenvalues of (17) are

{
864.939, 1.3528, 0.1083, 0.2639

}
.

In Table 1, we present a comparison in terms of power consumption for these experiments. We  compute the average power for the high
ower stage as Pa = 1

T

∫ T
0
P(t)dt, where P(t) is the instantaneous power and T is the duration of the experiment. Alternatively, to illustrate

his result, we present an economic savings for industrial applications. The average retail price of electricity to ultimate industry customers
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Fig. 5. Stabilizing test, setpoint 60 ◦C.
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Fig. 6. Stabilizing test, setpoint 70 ◦C.

Table 1
Average power of the stabilizing tests.

Temperature(◦C) ONL
(Wh)

PID
(Wh)

Power savings
(%)

Savings per year
(US-dollar)

50 28.841 29.652 2.73 515.79

i
s

R
±
s

R
c

55  42.075 49.060 14.23 4451.01
60  61.033 62.184 1.85 733.45
70  121.856 132.587 8.09 6838.10

n November of 2014 for the “Pacific Contiguous” census division is 8.51 Cents per Kilowatt-hour [33]. Table 1 presents the total energy
aving using one atmospheric drying process for industrial proposes (8-hours per day and 5-days per week).

emark 3. Observe in Table 1 that the energy saved in the experiments at 50 and 60 degrees is low. However, for an error criteria of
5%, when the optimal nonlinear control is applied, the settling time is 60 s and 100 s, respectively. For the PID, the settling time for these

etpoints is 130 s and 140 s, respectively.

¯
emark 4. In view of the obtained constant values ¯̨  and ˇwhich satisfy the positivity of the matrix given by (17), we observe that in the
ase of a temperature setpoint of 50 ◦C the nonlinear function (26) satisfies the condition

f 2(x(t), x(t − h)) ≤ 0.017
(
x2(t) + x2(t − h)

)
.
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Fig. 7. Robustness test, setpoint 55 ◦C.
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Fig. 8. Robustness test, setpoint 60 ◦C.

hen the temperature reaches the steady state we find that the bound on the nonlinearities for which the temperature system can be
aintained is ±9.22 ◦C; for a temperature setpoint of 55 ◦C the nonlinearities are ±9.53 ◦C. In contrast, when the setpoint is 60 ◦C we find

 bound on the nonlinearities of ±30 ◦C and for 70 ◦C of ±560 ◦C. These very different bounds depend on the estimated parameters of the
ystem, so we present some experiments to verify the robustness directly on the platform.

.3. Robustness experimental results

In a dehydration process, the humidity of the product is measured, by weighing the product at given time intervals. This offline task
equires opening the lid of the prototype, hence a disturbance is introduced. In this section, we present the experimental results showing
he systems response to opening the lid 650 s after the beginning of the experiments. The gains considered in the previous subsection are
sed. Fig. 7 illustrates the system response for a setpoint of 55 ◦C.

Fig. 8 shows the experimental results when the setpoint is 60 ◦C. Then, Fig. 9 illustrates the results when the setpoint is 70 ◦C and the
id is opened 750 s after the beginning of the experiment.

Next in Table 2, we present a comparison of the power consumption for the robustness tests.

emark 5. The robustness experiments show the efficiency of the proposed control law, give evidence of a better performance and more
ower savings, when we compare with an industrial PID controller.
emark 6. Previous experimental results over temperature process were presented recently [34,35], where the optimal regulation of
ir flow in a dehydration problem with a prototype of a dryer is considered. In order to compare the performance of our controller (20)
gainst a linear optimal controller with delay compensation, we consider a predictive control for systems with input delay as in [36,37]
or compensating the time delay. Then, the optimal controller is synthesized as a Linear Quadratic Regulator [19].
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Fig. 9. Robustness test, setpoint 70 ◦C.

Table 2
Average power of the robustness tests.

Temperature
(◦C)

ONL
(Wh)

PID
(Wh)

Power savings
(%)

Saving per year
(US-dollar)

55 83.607 96.192 13.08 7979.37
60  107.768 125.919 14.41 11,566.39
70  178.535 213.673 16.44 22,390.94
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Fig. 10. Comparison of the system response with an optimal linear controller versus the optimal nonlinear controller.

Fig. 10 shows the experimental results, where we  compare the performance of the optimal linear controller (with Q = 1500 and R = 0.1)
ersus the optimal nonlinear control synthesized in this work. We introduced a disturbance 750 s after the beginning of the experiment.

. Conclusions

The optimal nonlinear control law which stabilizes asymptotically a class of nonlinear time delay systems is synthesized, provided

 sufficient condition which guarantees that an explicit complete type functional V(xt) is a CLKF is satisfied. Unlike other approaches,
ur proposal is constructive and although some theoretical restrictions are imposed in the nonlinearities some experimental results
emonstrate its efficiency. In spite of the fact that the condition guaranteeing that V(xt) is a CLKF introduce conservatism, it provides
atisfactory performance results in the case of experimental tests, even when the system is perturbed. Moreover, the use of this type of
ontrol laws improves the quality of the products, which is currently investigated. Future work includes constrained controls.
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ppendix

In this section, we verify that the Hamilton-Jacobi-Bellman equation (23) is satisfied when the control law (20) is optimal and as we
onsider that the complete type functional V(x∗

t ) is the Bellman functional, we  know from its derivative (12) the functionals �0(x∗
t ) and

T
1(x∗

t ), which are replaced into equations (22).

dV(x∗
t )

dt

∣∣∣
(8)

+ q(x∗
t ) + r(x∗

t )u
T (x∗

t )u(x∗
t ) = �0(x∗

t ) + �T1 (x∗
t )

(
− 1

2
�1(x∗

t )

r(x∗
t )

)
+ �T1 (x∗

t )�1(x∗
t ) +
√[

�0(x∗
t )
]2

+
[
�T1 (x∗

t )�1(x∗
t )
]2

+ r(x∗
t )

(
− 1

2
�1(x∗

t )

r(x∗
t )

)T (
− 1

2
�1(x∗

t )

r(x∗
t )

)
= �0(x∗

t ) − 1
2

�T1 (x∗
t )�1(x∗

t )

r(x∗
t )

+ �T1 (x∗
t )�1(x∗

t ) +
√[

�0(x∗
t )
]2

+
[
�T1 (x∗

t )�1(x∗
t )
]2

+ �T1 (x∗
t )�1(x∗

t )

4r(x∗
t )

=  �0(x∗
t ) − 1

4

�T1 (x∗
t )�1(x∗

t )

r(x∗
t )

+ �T1 (x∗
t )�1(x∗

t ) +
√[

�0(x∗
t )
]2

+
[
�T1 (x∗

t )�1(x∗
t )
]2

ubstituting r(x∗
t )

�0(x∗
t ) − �T1 (x∗

t )�1(x∗
t )⎛

⎝ 4

[
1
4
�T1 (x∗

t )�1(x∗
t )

]
�T1 (x∗

t )�1(x∗
t ) + �0(x∗

t ) +
√[

�0(x∗
t )
]2

+
[
�T1 (x∗

t )�1(x∗
t )
]2

⎞
⎠

+�T1(x∗
t )�1(x∗

t ) +
√[

�0(x∗
t )
]2

+
[
�T1 (x∗

t )�1(x∗
t )
]2

= �0(x∗
t ) −
(
�T1 (x∗

t )�1(x∗
t ) + �0(x∗

t ) +
√[

�0(x∗
t )
]2

+
[
�T1 (x∗

t )�1(x∗
t )
]2

)
+�T1 (x∗

t )�1(x∗
t ) +
√[

�0(x∗
t )
]2

+
[
�T1 (x∗

t )�1(x∗
t )
]2

= 0

hen, the CLKF of system (8) and the optimal control law (20) satisfy the HJB equation (23) associated with the performance index (21).
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